發表時間:2021-01-12 閱讀次數:1196次
報告題目: On 3D Hall-MHD equations with fractional Laplacians: global well-posedness
報 告 人:張華麗
報告人所在單位:長沙理工大學
報告日期:2021-01-12 星期二
報告時間:10:30
報告地點:HGD2001
  
報告摘要:
In this talk, we will study the Cauchy problem for 3D incompressible Hall-MHD equations with fractional Laplacians $(-\Delta)^{\frac{1}{2}}$. The well-posedness of 3D incompressible Hall-MHD equations remains an open problem with fractional diffusion $(-\Delta)^{\beta}, \beta\in (0, {\frac{1}{2}}]$. In our talk, we first present the global well-posedness of small-energy solutions with general initial data in $H^s$, $s>\frac{5}{2}$. Second, a special class of large-energy initial data is constructed, with which the Cauchy problem is globally well-posed. The proofs rely upon a new global bound of energy estimates involving Littlewood-Paley decomposition and Sobolev inequalities, which enables one to overcome the $\frac{1}{2}$-order derivative loss of the magnetic field. This is a joint work with Kun Zhao.
  
本年度學院報告總序號:6

Copyright © |2012 復旦大學數學科學學院版權所有 滬ICP備042465  

電話:+86(21)65642341 傳真:+86(21)65646073  

自拍偷拍校园春色都市激情家庭乱伦武侠古典